Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Intervalo de año de publicación
1.
Micron ; 152: 103180, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798356

RESUMEN

In Brazil, the Trypanosoma sp. 858 was isolated from a toad (Anura: Bufonidae: Rhinella ictericus) and successfully maintained in cultures. We previously demonstrated that this trypanosome is different but tightly clustered phylogenetically with other trypanosomes from anurans. In this study, we addressed the ultrastructural features of cultured epimastigotes of this new trypanosome. Our results showed very long and thin free motile forms exhibiting a long flagellum and remarkable large and loose K-DNA network. In addition, the anterior portion contained many acidocalcisomes and a well-developed spongiome tubules-contractile vacuole system. One of the main morphological features of this anuran trypanosome was the presence of a complex cytostome-cytopharynx with a specialized membrane coating at the entrance, which is often hidden by the flagellum. Other conspicuous features are the presence of lipid-like droplets, lamellar membrane limited inclusions, and one very large reservosome, all at the posterior portion of the cell body. This new trypanosome may constitute an excellent model for organelles studies related to endocytosis and lipid storage, as demonstrated herein using scanning and transmission electron microscopy and three-dimensional models obtained by either electron microscopy tomography or dual-beam slice and view series.


Asunto(s)
Imagenología Tridimensional , Trypanosoma , Animales , Bufonidae , Membrana Celular , Vacuolas
2.
Parasit Vectors ; 13(1): 308, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532317

RESUMEN

BACKGROUND: The subgenus Megatrypanum Hoare, 1964 of Trypanosoma Gruby, 1843 comprises trypanosomes of cervids and bovids from around the world. Here, the white-tailed deer Odocoileus virginianus (Zimmermann) and its ectoparasite, the deer ked Lipoptena mazamae Rondani, 1878 (hippoboscid fly), were surveyed for trypanosomes in Venezuela. RESULTS: Haemoculturing unveiled 20% infected WTD, while 47% (7/15) of blood samples and 38% (11/29) of ked guts tested positive for the Megatrypanum-specific TthCATL-PCR. CATL and SSU rRNA sequences uncovered a single species of trypanosome. Phylogeny based on SSU rRNA and gGAPDH sequences tightly cluster WTD trypanosomes from Venezuela and the USA, which were strongly supported as geographical variants of the herein described Trypanosoma (Megatrypanum) trinaperronei n. sp. In our analyses, the new species was closest to Trypanosoma sp. D30 from fallow deer (Germany), both nested into TthII alongside other trypanosomes from cervids (North American elk and European fallow, red and sika deer), and bovids (cattle, antelopes and sheep). Insights into the life-cycle of T. trinaperronei n. sp. were obtained from early haemocultures of deer blood and co-culture with mammalian and insect cells showing flagellates resembling Megatrypanum trypanosomes previously reported in deer blood, and deer ked guts. For the first time, a trypanosome from a cervid was cultured and phylogenetically and morphologically (light and electron microscopy) characterised. CONCLUSIONS: In the analyses based on SSU rRNA, gGAPDH, CATL and ITS rDNA sequences, neither cervids nor bovids trypanosomes were monophyletic but intertwined within TthI and TthII major phylogenetic lineages. One host species can harbour more than one species/genotype of trypanosome, but each trypanosome species/genotype was found in a single host species or in phylogenetically closely related hosts. Molecular evidence that L. mazamae may transmit T. trinaperronei n. sp. suggests important evolutionary constraints making tight the tripartite T. trinaperronei-WTD-deer ked association. In a plausible evolutionary scenario, T. trinaperronei n. sp. entered South America with North American white-tailed deer at the Pliocene-Pleistocene boundary following the closure of the Panama Isthmus.


Asunto(s)
Enfermedad de Chagas/veterinaria , Ciervos/parasitología , Dípteros/parasitología , Infestaciones Ectoparasitarias/veterinaria , Trypanosoma/clasificación , Trypanosoma/fisiología , Animales , Evolución Biológica , ADN Ribosómico/genética , Femenino , Genotipo , Especificidad del Huésped , Masculino , Microscopía Electrónica , Filogenia , Filogeografía , ARN Ribosómico 18S/genética , Trypanosoma/ultraestructura , Venezuela
3.
Parasit Vectors ; 12(1): 225, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31088523

RESUMEN

BACKGROUND: The genus Trypanosoma Gruby, 1843 is constituted by terrestrial and aquatic phylogenetic lineages both harboring understudied trypanosomes from reptiles including an increasing diversity of crocodilian trypanosomes. Trypanosoma clandestinus Teixeira & Camargo, 2016 of the aquatic lineage is transmitted by leeches to caimans. Trypanosoma grayi Novy, 1906 of the terrestrial lineage is transmitted by tsetse flies to crocodiles in Africa, but the vectors of Neotropical caiman trypanosomes nested in this lineage remain unknown. RESULTS: Our phylogenetic analyses uncovered crocodilian trypanosomes in tabanids from South America and Africa, and trypanosomes other than T. grayi in tsetse flies. All trypanosomes found in tabanids clustered in the crocodilian clade (terrestrial lineage) forming six clades: Grayi (African trypanosomes from crocodiles and tsetse flies); Ralphi (trypanosomes from caimans, African and Brazilian tabanids and tsetse flies); Terena (caimans); Cay03 (caimans and Brazilian tabanids); and two new clades, Tab01 (Brazilian tabanid and tsetse flies) and Kaiowa. The clade Kaiowa comprises Trypanosoma kaiowa n. sp. and trypanosomes from African and Brazilian tabanids, caimans, tsetse flies and the African dwarf crocodile. Trypanosoma kaiowa n. sp. heavily colonises tabanid guts and differs remarkably in morphology from other caiman trypanosomes. This species multiplied predominantly as promastigotes on log-phase cultures showing scarce epimastigotes and exhibited very long flagellates in old cultures. Analyses of growth behavior revealed that insect cells allow the intracellular development of Trypanosoma kaiowa n. sp. CONCLUSIONS: Prior to this description of Trypanosoma kaiowa n. sp., no crocodilian trypanosome parasitic in tabanid flies had been cultured, morphologically examined by light, scanning and transmission microscopy, and phylogenetically compared with other crocodilian trypanosomes. Additionally, trypanosomes thought to be restricted to caimans were identified in Brazilian and African tabanids, tsetse flies and the dwarf crocodile. Similar repertoires of trypanosomes found in South American caimans, African crocodiles and tabanids from both continents support the recent diversification of these transcontinental trypanosomes. Our findings are consistent with trypanosome host-switching likely mediated by tabanid flies between caimans and transoceanic migrant crocodiles co-inhabiting South American wetlands at the Miocene.


Asunto(s)
Caimanes y Cocodrilos/parasitología , Dípteros/parasitología , Trypanosoma/genética , Trypanosoma/aislamiento & purificación , África , Animales , Brasil , ADN Protozoario/genética , ADN Ribosómico/genética , Femenino , Insectos Vectores/parasitología , Filogenia , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN , Moscas Tse-Tse/parasitología
4.
Parasit vectors, v. 12, 225, 2019
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2750

RESUMEN

Background The genus Trypanosoma Gruby, 1843 is constituted by terrestrial and aquatic phylogenetic lineages both harboring understudied trypanosomes from reptiles including an increasing diversity of crocodilian trypanosomes. Trypanosoma clandestinus Teixeira & Camargo, 2016 of the aquatic lineage is transmitted by leeches to caimans. Trypanosoma grayi Novy, 1906 of the terrestrial lineage is transmitted by tsetse flies to crocodiles in Africa, but the vectors of Neotropical caiman trypanosomes nested in this lineage remain unknown. Results Our phylogenetic analyses uncovered crocodilian trypanosomes in tabanids from South America and Africa, and trypanosomes other than T. grayi in tsetse flies. All trypanosomes found in tabanids clustered in the crocodilian clade (terrestrial lineage) forming six clades: Grayi (African trypanosomes from crocodiles and tsetse flies); Ralphi (trypanosomes from caimans, African and Brazilian tabanids and tsetse flies); Terena (caimans); Cay03 (caimans and Brazilian tabanids); and two new clades, Tab01 (Brazilian tabanid and tsetse flies) and Kaiowa. The clade Kaiowa comprises Trypanosoma kaiowa n. sp. and trypanosomes from African and Brazilian tabanids, caimans, tsetse flies and the African dwarf crocodile. Trypanosoma kaiowa n. sp. heavily colonises tabanid guts and differs remarkably in morphology from other caiman trypanosomes. This species multiplied predominantly as promastigotes on log-phase cultures showing scarce epimastigotes and exhibited very long flagellates in old cultures. Analyses of growth behavior revealed that insect cells allow the intracellular development of Trypanosoma kaiowa n. sp. Conclusions Prior to this description of Trypanosoma kaiowa n. sp., no crocodilian trypanosome parasitic in tabanid flies had been cultured, morphologically examined by light, scanning and transmission microscopy, and phylogenetically compared with other crocodilian trypanosomes. Additionally, trypanosomes thought to be restricted to caimans were identified in Brazilian and African tabanids, tsetse flies and the dwarf crocodile. Similar repertoires of trypanosomes found in South American caimans, African crocodiles and tabanids from both continents support the recent diversification of these transcontinental trypanosomes. Our findings are consistent with trypanosome host-switching likely mediated by tabanid flies between caimans and transoceanic migrant crocodiles co-inhabiting South American wetlands at the Miocene.

5.
Parasit. vectors. ; 12: 225, 2019.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib16000

RESUMEN

Background The genus Trypanosoma Gruby, 1843 is constituted by terrestrial and aquatic phylogenetic lineages both harboring understudied trypanosomes from reptiles including an increasing diversity of crocodilian trypanosomes. Trypanosoma clandestinus Teixeira & Camargo, 2016 of the aquatic lineage is transmitted by leeches to caimans. Trypanosoma grayi Novy, 1906 of the terrestrial lineage is transmitted by tsetse flies to crocodiles in Africa, but the vectors of Neotropical caiman trypanosomes nested in this lineage remain unknown. Results Our phylogenetic analyses uncovered crocodilian trypanosomes in tabanids from South America and Africa, and trypanosomes other than T. grayi in tsetse flies. All trypanosomes found in tabanids clustered in the crocodilian clade (terrestrial lineage) forming six clades: Grayi (African trypanosomes from crocodiles and tsetse flies); Ralphi (trypanosomes from caimans, African and Brazilian tabanids and tsetse flies); Terena (caimans); Cay03 (caimans and Brazilian tabanids); and two new clades, Tab01 (Brazilian tabanid and tsetse flies) and Kaiowa. The clade Kaiowa comprises Trypanosoma kaiowa n. sp. and trypanosomes from African and Brazilian tabanids, caimans, tsetse flies and the African dwarf crocodile. Trypanosoma kaiowa n. sp. heavily colonises tabanid guts and differs remarkably in morphology from other caiman trypanosomes. This species multiplied predominantly as promastigotes on log-phase cultures showing scarce epimastigotes and exhibited very long flagellates in old cultures. Analyses of growth behavior revealed that insect cells allow the intracellular development of Trypanosoma kaiowa n. sp. Conclusions Prior to this description of Trypanosoma kaiowa n. sp., no crocodilian trypanosome parasitic in tabanid flies had been cultured, morphologically examined by light, scanning and transmission microscopy, and phylogenetically compared with other crocodilian trypanosomes. Additionally, trypanosomes thought to be restricted to caimans were identified in Brazilian and African tabanids, tsetse flies and the dwarf crocodile. Similar repertoires of trypanosomes found in South American caimans, African crocodiles and tabanids from both continents support the recent diversification of these transcontinental trypanosomes. Our findings are consistent with trypanosome host-switching likely mediated by tabanid flies between caimans and transoceanic migrant crocodiles co-inhabiting South American wetlands at the Miocene.

6.
Front Microbiol ; 9: 131, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29467742

RESUMEN

This study is about the inter- and intra-specific genetic diversity of trypanosomatids of the genus Angomonas, and their association with Calliphoridae (blowflies) in Neotropical and Afrotropical regions. Microscopic examination of 3,900 flies of various families, mostly Calliphoridae, revealed that 31% of them harbored trypanosomatids. Small subunit rRNA (SSU rRNA) barcoding showed that Angomonas predominated (46%) over the other common trypanosomatids of blowflies of genera Herpetomonas and Wallacemonas. Among Angomonas spp., A. deanei was much more common than the two-other species, A. desouzai and A. ambiguus. Phylogenetic analyses based on SSU rRNA, glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) and internal transcribed spacer rDNA (ITS rDNA) sequences revealed a marked genetic diversity within A. deanei, which comprised four infraspecific genotypes (Dea1-Dea4), and four corresponding symbiont genotypes (Kcr1-Kcr4). Host and symbiont phylogenies were highly congruent corroborating their co-divergence, consistent with host-symbiont interdependent metabolism and symbiont reduced genomes shaped by a long coevolutionary history. We compared the diversity of Angomonas/symbionts from three genera of blowflies, Lucilia, Chrysomya and Cochliomyia. A. deanei, A. desouzai, and A. ambiguus were found in the three genera of blowflies in South America. In Africa, A. deanei and A. ambiguus were identified in Chrysomya. The absence of A. desouzai in Africa and its presence in Neotropical Cochliomyia and Lucilia suggests parasite spillback of A. desouzai into Chrysomya, which was most likely introduced four decades ago from Africa into the Neotropic. The absence of correlation between parasite diversity and geographic and genetic distances, with identical genotypes of A. deanei found in the Neotropic and Afrotropic, is consistent with disjunct distribution due to the recent human-mediated transoceanic dispersal of Angomonas by Chrysomya. This study provides the most comprehensive data gathered so far on the genetic repertoires of a genus of trypanosomatids found in flies from a wide geographical range.

7.
Infect Genet Evol ; 63: 380-390, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28882517

RESUMEN

Trypanosoma (Herpetosoma) lewisi is a cosmopolitan parasite of rodents strongly linked to the human dispersal of Rattus spp. from Asia to the rest of the world. This species is highly phylogenetically related to trypanosomes from other rodents (T. lewisi-like), and sporadically infects other mammals. T. lewisi may opportunistically infect humans, and has been considered an emergent rat-borne zoonosis associated to poverty. We developed the THeCATL-PCR based on Cathepsin L (CATL) sequences to specifically detect T. (Herpetosoma) spp., and assess their genetic diversity. This method exhibited high sensitivity using blood samples, and is the first molecular method employed to search for T. lewisi in its flea vectors. THeCATL-PCR surveys using simple DNA preparation from blood preserved in ethanol or filter paper detected T. lewisi in Rattus spp. from human dwellings in South America (Brazil and Venezuela), East Africa (Mozambique), and Southeast Asia (Thailand, Cambodia and Lao PDR). In addition, native rodents captured in anthropogenic and nearby human settlements in natural habitats harbored T. (Herpetosoma) spp. PCR-amplified CATL gene fragments (253bp) distinguish T. lewisi and T. lewisi-like from other trypanosomes, and allow for assessment of genetic diversity and relationships among T. (Herpetosoma) spp. Our molecular surveys corroborated worldwide high prevalence of T. lewisi, incriminating Mastomys natalensis as an important carrier of this species in Africa, and supported its spillover from invader Rattus spp. to native rodents in Brazil and Mozambique. THeCATL-PCR provided new insights on the accurate diagnosis and genetic repertoire of T. (Herpetosoma) spp. in rodent and non-rodent hosts, revealing a novel species of this subgenus in an African gerbil. Phylogenetic analysis based on CATL sequences from T. (Herpetosoma) spp. and other trypanosomes (amplified using pan-trypanosome primers) uncovered rodents harboring, beyond mammal trypanosomes of different subgenera, some species that clustered in the lizard-snake clade of trypanosomes.


Asunto(s)
Catepsina L/genética , Proteínas Protozoarias/genética , Enfermedades de los Roedores/epidemiología , Trypanosoma lewisi/genética , Tripanosomiasis/veterinaria , Zoonosis/epidemiología , Distribución Animal , Animales , Brasil/epidemiología , Cambodia/epidemiología , ADN Protozoario/genética , Gerbillinae/parasitología , Humanos , Laos/epidemiología , Mozambique/epidemiología , Murinae/parasitología , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Ratas , Enfermedades de los Roedores/parasitología , Enfermedades de los Roedores/transmisión , Siphonaptera/parasitología , Tailandia/epidemiología , Trypanosoma lewisi/clasificación , Trypanosoma lewisi/aislamiento & purificación , Tripanosomiasis/epidemiología , Tripanosomiasis/parasitología , Tripanosomiasis/transmisión , Zoonosis/parasitología , Zoonosis/transmisión
8.
Eur J Protistol ; 56: 232-249, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27771468

RESUMEN

The genus Phytomonas includes trypanosomatids transmitted to the fruits, latex, and phloem of vascular plants by hemipterans. We inferred the phylogenetic relationships of plant and insect isolates assigned to the previously defined genetic groups A-F and H of Phytomonas, particularly those from groups A, C and E comprising flagellates of Solanaceae fruits. Phylogenetic analyses using glycosomal Glyceraldehyde Phosphate Dehydrogenase (gGAPDH) and Small Subunit rRNA (SSU rRNA) genes strongly supported the monophyly of the genus Phytomonas and its division into seven main infrageneric phylogenetic lineages (Phy clades). Isolates from fruit or latex do not constitute monophyletic assemblages but disperse through more than one lineages. In this study, fruit flagellates were distributed in three clades: PhyA, formed by isolates from Solanaceae and phytophagous hemipterans; PhyC comprising flagellates from four plant families; and PhyE, which contains 15 fruit isolates from seven species of Solanaceae. The flagellates of PhyE are described as Phytomonas dolleti n. sp. according to their positioning in phylogenetic trees, complemented by data about their life cycle, and developmental and morphological characteristics in cultures, fruits of Solanum spp., and salivary glands of the vector, the phytophagous hemipteran Arvelius albopunctatus (Pentatomidae).


Asunto(s)
Euglenozoos/clasificación , Hemípteros/parasitología , Filogenia , Animales , Glándulas Salivales/parasitología , Solanaceae/parasitología , Especificidad de la Especie
9.
J Eukaryot Microbiol ; 63(5): 610-22, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26932133

RESUMEN

We described the phylogenetic affiliation, development in cultures and ultrastructural features of a trypanosome of Leptodacylus chaquensis from the Pantanal biome of Brazil. In the inferred phylogeny, this trypanosome nested into the Anura clade of the basal Aquatic clade of Trypanosoma, but was separate from all known species within this clade. This finding enabled us to describe it as Trypanosoma herthameyeri n. sp., which also infects other Leptodacylus species from the Pantanal and Caatinga biomes. Trypanosoma herthameyeri multiplies as small rounded forms clumped together and evolving into multiple-fission forms and rosettes of epimastigotes released as long forms with long flagella; scarce trypomastigotes and glove-like forms are common in stationary-phase cultures. For the first time, a trypanosome from an amphibian was observed by field emission scanning electron microscopy, revealing a cytostome opening, well-developed flagellar lamella, and many grooves in pumpkin-like forms. Transmission electron microscopy showed highly developed Golgi complexes, relaxed catenation of KDNA, and a rich set of spongiome tubules in a regular parallel arrangement to the flagellar pocket as confirmed by electron tomography. Considering the basal position in the phylogenetic tree, developmental and ultrastructural data of T. herthameyeri are valuable for evolutionary studies of trypanosome architecture and cell biology.


Asunto(s)
Anuros/parasitología , Filogenia , Trypanosoma/clasificación , Trypanosoma/ultraestructura , Tripanosomiasis/veterinaria , Animales , Anuros/sangre , Biodiversidad , Brasil , Clasificación , ADN Protozoario/genética , Ecología , Ecosistema , Tomografía con Microscopio Electrónico/métodos , Flagelos/ultraestructura , Aparato de Golgi/ultraestructura , Especificidad del Huésped , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión/métodos , Trypanosoma/crecimiento & desarrollo , Trypanosoma/aislamiento & purificación , Tripanosomiasis/sangre , Tripanosomiasis/diagnóstico , Tripanosomiasis/parasitología
10.
Parasit Vectors ; 8: 657, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26701154

RESUMEN

BACKGROUND: Bat trypanosomes are implicated in the evolution of the T. cruzi clade, which harbours most African, European and American trypanosomes from bats and other trypanosomes from African, Australian and American terrestrial mammals, including T. cruzi and T. rangeli, the agents of the American human trypanosomiasis. The diversity of bat trypanosomes globally is still poorly understood, and the common ancestor, geographical origin, and evolution of species within the T. cruzi clade remain largely unresolved. METHODS: Trypanosome sequences were obtained from cultured parasites and from museum archived liver/blood samples of bats captured from Guatemala (Central America) to the Brazilian Atlantic Coast. Phylogenies were inferred using Small Subunit (SSU) rRNA, glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH), and Spliced Leader (SL) RNA genes. RESULTS: Here, we described Trypanosoma wauwau n. sp. from Pteronotus bats (Mormoopidae) placed in the T. cruzi clade, then supporting the bat-seeding hypothesis whereby the common ancestor of this clade likely was a bat trypanosome. T. wauwau was sister to the clade T. spp-Neobats from phyllostomid bats forming an assemblage of trypanosome species exclusively of Noctilionoidea Neotropical bats, which was sister to an Australian clade of trypanosomes from indigenous marsupials and rodents, which possibly evolved from a bat trypanosome. T. wauwau was found in 26.5% of the Pteronotus bats examined, and phylogeographical analysis evidenced the wide geographical range of this species. To date, this species was not detected in other bats, including those that were sympatric or shared shelters with Pteronotus. T. wauwau did not develop within mammalian cells, and was not infective to Balb/c mice or to triatomine vectors of T. cruzi and T. rangeli. CONCLUSIONS: Trypanosoma wauwau n. sp. was linked to Pteronotus bats. The positioning of the clade T. wauwau/T.spp-Neobats as the most basal Neotropical bat trypanosomes and closely related to an Australian lineage of trypanosomes provides additional evidence that the T. cruzi clade trypanosomes likely evolved from bats, and were dispersed in bats within and between continents from ancient to unexpectedly recent times.


Asunto(s)
Evolución Molecular , Variación Genética , Trypanosoma cruzi/clasificación , Trypanosoma cruzi/genética , Animales , Australia , Brasil , América Central , Quirópteros , Análisis por Conglomerados , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 18S/genética , ARN Lider Empalmado , Análisis de Secuencia de ADN , Homología de Secuencia , Trypanosoma cruzi/aislamiento & purificación
11.
Int J Parasitol Parasites Wildl ; 4(3): 368-78, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26767165

RESUMEN

Trypanosoma terena and Trypanosoma ralphi are known species of the South American crocodilians Caiman crocodilus, Caiman yacare and Melanosuchus niger and are phylogenetically related to the tsetse-transmitted Trypanosoma grayi of the African Crocodylus niloticus. These trypanosomes form the Crocodilian clade of the terrestrial clade of the genus Trypanosoma. A PCR-survey for trypanosomes in caiman blood samples and in leeches taken from caimans revealed unknown trypanosome diversity and frequent mixed infections. Phylogenies based on SSU (small subunit) of rRNA and gGAPDH (glycosomal Glyceraldehyde Phosphate Dehydrogenase) gene sequences revealed a new trypanosome species clustering with T. terena and T. ralphi in the crocodilian clade and an additional new species nesting in the distant Aquatic clade of trypanosomes, which is herein named Trypanosoma clandestinus n. sp. This new species was found in Caiman yacare, Caiman crocodilus and M. niger from the Pantanal and Amazonian biomes in Brazil. Large numbers of dividing epimastigotes and unique thin and long trypomastigotes were found in the guts of leeches (Haementeria sp.) removed from the mouths of caimans. The trypanosomes recovered from the leeches had sequences identical to those of T. clandestinus of caiman blood samples. Experimental infestation of young caimans (Caiman yacare) with infected leeches resulted in long-lasting T. clandestinus infections that permitted us to delineate its life cycle. In contrast to T. terena, T. ralphi and T. grayi, which are detectable by hemoculturing, microscopy and standard PCR of caiman blood, T. clandestinus passes undetected by these methods due to very low parasitemia and could be detected solely by the more sensitive nested PCR method. T. clandestinus n. sp. is the first crocodilian trypanosome known to be transmitted by leeches and positioned in the aquatic clade closest to fish trypanosomes. Our data show that caimans can host trypanosomes of the aquatic or terrestrial clade, sometimes simultaneously.

12.
Rev Soc Bras Med Trop ; 47(3): 374-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24728471

RESUMEN

INTRODUCTION: This study reports for the first time the infection of Rhodnius montenegrensis by Trypanosoma rangeli. METHODS: The triatomines were manually collected in Attalea speciosa in the municipality of Buritis, Rondônia. The identification of the trypanosomatid species was confirmed by multiplex PCR. RESULTS: All of the collected triatomines were R. montenegrensis. The analysis confirmed that all of the adults were infected with the epimastigote form of T. rangeli. CONCLUSIONS: This report of a new vector of T. rangeli raises a warning for the State of Rondônia because the simultaneous presence of T. rangeli with T. cruzi in the same geographic region enables the occurrence of mixed infections in hosts and vectors, which complicates the differential diagnosis.


Asunto(s)
ADN Protozoario/genética , Insectos Vectores/parasitología , Rhodnius/parasitología , Trypanosoma rangeli/aislamiento & purificación , Animales , Reacción en Cadena de la Polimerasa Multiplex , Trypanosoma rangeli/genética
13.
Parasit Vectors ; 6(1): 221, 2013 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-23915781

RESUMEN

BACKGROUND: Bat trypanosomes have been implicated in the evolutionary history of the T. cruzi clade, which comprises species from a wide geographic and host range in South America, Africa and Europe, including bat-restricted species and the generalist agents of human American trypanosomosis T. cruzi and T. rangeli. METHODS: Trypanosomes from bats (Rhinolophus landeri and Hipposideros caffer) captured in Mozambique, southeast Africa, were isolated by hemoculture. Barcoding was carried out through the V7V8 region of Small Subunit (SSU) rRNA and Fluorescent Fragment Length barcoding (FFLB). Phylogenetic inferences were based on SSU rRNA, glyceraldehyde phosphate dehydrogenase (gGAPDH) and Spliced Leader (SL) genes. Morphological characterization included light, scanning and transmission electron microscopy. RESULTS: New trypanosomes from bats clustered together forming a clade basal to a larger assemblage called the T. cruzi clade. Barcoding, phylogenetic analyses and genetic distances based on SSU rRNA and gGAPDH supported these trypanosomes as a new species, which we named Trypanosoma livingstonei n. sp. The large and highly polymorphic SL gene repeats of this species showed a copy of the 5S ribosomal RNA into the intergenic region. Unique morphological (large and broad blood trypomastigotes compatible to species of the subgenus Megatrypanum and cultures showing highly pleomorphic epimastigotes and long and slender trypomastigotes) and ultrastructural (cytostome and reservosomes) features and growth behaviour (when co-cultivated with HeLa cells at 37°C differentiated into trypomastigotes resembling the blood forms and do not invaded the cells) complemented the description of this species. CONCLUSION: Phylogenetic inferences supported the hypothesis that Trypanosoma livingstonei n. sp. diverged from a common ancestral bat trypanosome that evolved exclusively in Chiroptera or switched at independent opportunities to mammals of several orders forming the clade T. cruzi, hence, providing further support for the bat seeding hypothesis to explain the origin of T. cruzi and T. rangeli.


Asunto(s)
Quirópteros/parasitología , Reservorios de Enfermedades/parasitología , Trypanosoma cruzi/clasificación , Trypanosoma cruzi/aislamiento & purificación , Tripanosomiasis/parasitología , Animales , ADN Protozoario/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Mozambique , Filogenia , Proteínas Protozoarias/genética , ARN Ribosómico/genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/fisiología
14.
Protist ; 164(1): 129-52, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22938923

RESUMEN

In order to review the taxonomy of the genus Herpetomonas through phylogenetic and morphological analyses we barcoded 527 insect trypanosomatids by sequencing the V7V8 region of the small subunit ribosomal RNA (SSU rRNA) gene. Fifty two flagellates, 90% of them from Diptera, revealed to be related to known species of Herpetomonas. Sequences of entire glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and SSU rRNA genes were employed for phylogenetic inferences including representatives of all genera of Trypanosomatidae. In the resulting phylogenetic trees, the selected flagellates clustered into a monophyletic assemblage that we are considering as the redefined genus Herpetomonas. Internal transcribed spacer 1 (ITS1) rDNA sequences and putative secondary structures of this region were compared for evaluation of inter- and intraspecific variability. The flagellates were classified in six already known species and five new species. In addition, two Leptomonas spp. were moved to Herpetomonas, now comprising 13 valid species, while four species were excluded from the genus. Light and electron microscopy revealed the extreme polymorphism of Herpetomonas, hindering genus and species identification by morphological characteristics. Our findings also showed that some species of Herpetomonas are generalist parasites of flies and appear to be as cosmopolitan as their hosts.


Asunto(s)
Dípteros/parasitología , Trypanosomatina/clasificación , Trypanosomatina/genética , Animales , Análisis por Conglomerados , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Genes de ARNr , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Microscopía , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , ARN Protozoario/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN , Trypanosomatina/citología , Trypanosomatina/aislamiento & purificación
15.
Parasit Vectors ; 6(1): 313, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24499634

RESUMEN

BACKGROUND: Little is known about the diversity, phylogenetic relationships, and biogeography of trypanosomes infecting non-mammalian hosts. In this study, we investigated the influence of host species and biogeography on shaping the genetic diversity, phylogenetic relationship, and distribution of trypanosomes from South American alligatorids and African crocodilids. METHODS: Small Subunit rRNA (SSU rRNA) and glycosomal Glyceraldehyde Phosphate Dehydrogenase (gGAPDH) genes were employed for phylogenetic inferences. Trypanosomes from crocodilians were obtained by haemoculturing. Growth behaviour, morphology, and ultrastructural features complement the molecular description of two new species strongly supported by phylogenetic analyses. RESULTS: The inferred phylogenies disclosed a strongly supported crocodilian-restricted clade comprising three subclades. The subclade T. grayi comprised the African Trypanosoma grayi from Crocodylus niloticus and tsetse flies. The subclade T. ralphi comprised alligatorid trypanosomes represented by Trypanosoma ralphi n. sp. from Melanosuchus niger, Caiman crocodilus and Caiman yacare from Brazilian river basins. T. grayi and T. ralphi were sister subclades. The basal subclade T. terena comprised alligatorid trypanosomes represented by Trypanosoma terena n. sp. from Ca. yacare sharing hosts and basins with the distantly genetic related T. ralphi. This subclade also included the trypanosome from Ca. crocodilus from the Orinoco basin in Venezuela and, unexpectedly, a trypanosome from the African crocodilian Osteolaemus tetraspis. CONCLUSION: The close relationship between South American and African trypanosomes is consistent with paleontological evidence of recent transoceanic dispersal of Crocodylus at the Miocene/Pliocene boundaries (4-5 mya), and host-switching of trypanosomes throughout the geological configuration of South American hydrographical basins shaping the evolutionary histories of the crocodilians and their trypanosomes.


Asunto(s)
Caimanes y Cocodrilos/parasitología , Variación Genética , Filogeografía , Trypanosoma/clasificación , Trypanosoma/aislamiento & purificación , África , Animales , Análisis por Conglomerados , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , Microscopía , Datos de Secuencia Molecular , ARN Protozoario/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN , América del Sur , Trypanosoma/citología , Trypanosoma/genética
16.
Protist ; 163(6): 856-72, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22277804

RESUMEN

Parasites of the genus Trypanosoma are common in bats and those of the subgenus Schizotrypanum are restricted to bats throughout the world, with the exception of Trypanosoma (Schizotrypanum) cruzi that also infects other mammals and is restricted to the American Continent. We have characterized trypanosome isolates from Molossidae bats captured in Mozambique, Africa. Morphology and behaviour in culture, supported by phylogenetic inferences using SSU (small subunit) rRNA, gGAPDH (glycosomal glyceraldehyde 3-phosphate dehydrogenase) and Cyt b (cytochrome b) genes, allowed to classify the isolates as a new Schizotrypanum species named Trypanosoma (Schizotrypanum) erneyi sp. nov. This is the first report of a Schizotrypanum species from African bats cultured, characterized morphologically and biologically, and positioned in phylogenetic trees. The unprecedented finding of a new species of the subgenus Schizotrypanum from Africa that is closest related to the America-restricted Trypanosoma (Schizotrypanum) cruzi marinkellei and T. cruzi provides new insights into the origin and evolutionary history of T. cruzi and closely related bat trypanosomes. Altogether, data from our study support the hypothesis of an ancestor trypanosome parasite of bats evolving to infect other mammals, even humans, and adapted to transmission by triatomine bugs in the evolutionary history of T. cruzi in the New World.


Asunto(s)
Quirópteros/parasitología , Trypanosoma/clasificación , Trypanosoma/aislamiento & purificación , Tripanosomiasis/veterinaria , Animales , Análisis por Conglomerados , Citocromos b/genética , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , Gliceraldehído 3-Fosfato Deshidrogenasa (NADP+)/genética , Datos de Secuencia Molecular , Mozambique , Filogenia , ARN Protozoario/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN , Trypanosoma/citología , Trypanosoma/genética , Tripanosomiasis/parasitología
17.
Int J Parasitol ; 41(13-14): 1385-96, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22051399

RESUMEN

Species of the subgenus Trypanosoma (Megatrypanum) have been reported in cattle and other domestic and wild ruminants worldwide. A previous study in Brazil found at least four genotypes infecting cattle (Bos taurus), but only one in water buffalo (Bubalus bubalis). However, the small number of isolates examined from buffalo, all inhabiting nearby areas, has precluded evaluation of their diversity, host associations and geographical structure. To address these questions, we evaluated the genetic diversity and phylogeographical patterns of 25 isolates from water buffalo and 28 from cattle from four separate locations in Brazil and Venezuela. Multigene phylogenetic analyses of ssrRNA, internal transcribed spacer of rDNA (ITSrDNA), 5SrRNA, glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH), mitochondrial cytochrome b (Cyt b), spliced leader (SL) and cathepsin L-like (CATL) sequences positioned all isolates from sympatric and allopatric buffalo populations into the highly homogeneous genotype TthIA, while the cattle isolates were assigned to three different genotypes, all distinct from TthIA. Polymorphisms in all of these sequences separated the trypanosomes infecting water buffalo, cattle, sheep, antelope and deer, and suggested that they correspond to separate species. Congruent phylogenies inferred with all genes indicated a predominant clonal structure of the genotypes. The multilocus analysis revealed one monophyletic assemblage formed exclusively by trypanosomes of ruminants, which corresponds to the subgenus T. (Megatrypanum). The high degree of host specificity, evidenced by genotypes exclusive to each ruminant species and lack of genotype shared by different host species, suggested that the evolutionary history of trypanosomes of this subgenus was strongly constrained by their ruminant hosts. However, incongruence between ruminant and trypanosome phylogenies did not support host-parasite co-evolution, indicating that host switches have occurred across ruminants followed by divergences, giving rise to new trypanosome genotypes adapted exclusively to one host species.


Asunto(s)
Evolución Biológica , Búfalos/parasitología , Enfermedades de los Bovinos/parasitología , Filogenia , Rumiantes/parasitología , Trypanosoma/clasificación , Trypanosoma/genética , Tripanosomiasis/veterinaria , Animales , Brasil , Bovinos , Genotipo , Especificidad del Huésped , Datos de Secuencia Molecular , Filogeografía , Trypanosoma/aislamiento & purificación , Trypanosoma/fisiología , Tripanosomiasis/parasitología , Venezuela
18.
Protist ; 162(3): 503-24, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21420905

RESUMEN

We comparatively examined the nutritional, molecular and optical and electron microscopical characteristics of reference species and new isolates of trypanosomatids harboring bacterial endosymbionts. Sequencing of the V7V8 region of the small subunit of the ribosomal RNA (SSU rRNA) gene distinguished six major genotypes among the 13 isolates examined. The entire sequences of the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes were obtained for phylogenetic analyses. In the resulting phylogenetic trees, the symbiont-harboring species clustered as a major clade comprising two subclades that corresponded to the proposed genera Angomonas and Strigomonas. The genus Angomonas comprised 10 flagellates including former Crithidia deanei and C. desouzai plus a new species. The genus Strigomonas included former Crithidia oncopelti and Blastocrithidia culicis plus a new species. Sequences from the internal transcribed spacer of ribosomal DNA (ITS rDNA) and size polymorphism of kinetoplast DNA (kDNA) minicircles revealed considerable genetic heterogeneity within the genera Angomonas and Strigomonas. Phylogenetic analyses based on 16S rDNA and ITS rDNA sequences demonstrated that all of the endosymbionts belonged to the Betaproteobacteria and revealed three new species. The congruence of the phylogenetic trees of trypanosomatids and their symbionts support a co-divergent host-symbiont evolutionary history.


Asunto(s)
Betaproteobacteria/clasificación , Betaproteobacteria/genética , Simbiosis , Trypanosomatina/clasificación , Trypanosomatina/genética , Secuencia de Bases , Betaproteobacteria/aislamiento & purificación , Betaproteobacteria/ultraestructura , Evolución Biológica , Código de Barras del ADN Taxonómico/métodos , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Intergénico/química , ADN Intergénico/genética , ADN de Cinetoplasto/química , ADN de Cinetoplasto/genética , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Funciones de Verosimilitud , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Filogenia , Polimorfismo Genético , ARN Ribosómico 16S/genética , Subunidades Ribosómicas Pequeñas/genética , Análisis de Secuencia de ADN , Simbiosis/genética , Trypanosomatina/aislamiento & purificación , Trypanosomatina/ultraestructura
19.
Parasitol Int ; 59(3): 318-25, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20230907

RESUMEN

Although Trypanosomatheileri and allied trypanosomes are the most widespread trypanosomes in bovids little is known about proteolytic enzymes in these species. We have characterized genes encoding for cathepsin L-like (CATL) cysteine proteases from isolates of cattle, water buffalo and deer that largely diverged from homologues of other trypanosome species. Analysis of 78 CATL catalytic domain sequences from 22 T. theileri trypanosomes disclosed 6 genotypes tightly clustered together into the T. theileri clade. The CATL genes in these trypanosomes are organized in tandem arrays of approximately 1.7kb located in 2 chromosomal bands of 600-720kb. A diagnostic PCR assay targeting CATL sequences detected T. theileri of all genotypes from cattle, buffaloes and cervids and also from tabanid vectors. Expression of T. theileri cysteine proteases was demonstrated by proteolytic activity in gelatin gels and hydrolysis of Z-Phe-Arg-AMC substrate. Results from this work agree with previous data using ribosomal and spliced leader genes demonstrating that CATL gene sequences are useful for diagnosis, population genotyping and evolutionary studies of T. theileri trypanosomes.


Asunto(s)
Catepsina L/genética , Enfermedades de los Bovinos/diagnóstico , Proteasas de Cisteína/genética , Ganado/parasitología , Trypanosoma/enzimología , Tripanosomiasis/veterinaria , Secuencia de Aminoácidos , Animales , Búfalos/parasitología , Catepsina L/química , Catepsina L/metabolismo , Bovinos , Enfermedades de los Bovinos/parasitología , Proteasas de Cisteína/química , Proteasas de Cisteína/metabolismo , ADN Protozoario/análisis , ADN Protozoario/genética , Ciervos/parasitología , Genotipo , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Trypanosoma/clasificación , Trypanosoma/genética , Tripanosomiasis/diagnóstico , Tripanosomiasis/parasitología
20.
Int J Parasitol ; 40(3): 345-55, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19766649

RESUMEN

The genetic diversity and phylogeographical patterns of Trypanosoma species that infect Brazilian bats were evaluated by examining 1043 bats from 63 species of seven families captured in Amazonia, the Pantanal, Cerrado and the Atlantic Forest biomes of Brazil. The prevalence of trypanosome-infected bats, as estimated by haemoculture, was 12.9%, resulting in 77 cultures of isolates, most morphologically identified as Trypanosoma cf. cruzi, classified by barcoding using partial sequences from ssrRNA gene into the subgenus Schizotrypanum and identified as T. cruzi (15), T. cruzi marinkellei (37) or T. cf. dionisii (25). Phylogenetic analyses using nuclear ssrRNA, glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) and mitochondrial cytochrome b (Cyt b) gene sequences generated three clades, which clustered together forming the subgenus Schizotrypanum. In addition to vector association, bat trypanosomes were related by the evolutionary history, ecology and phylogeography of the bats. Trypanosoma cf. dionisii trypanosomes (32.4%) infected 12 species from four bat families captured in all biomes, from North to South Brazil, and clustered with T. dionisii from Europe despite being separated by some genetic distance. Trypanosoma cruzi marinkellei (49.3%) was restricted to phyllostomid bats from Amazonia to the Pantanal (North to Central). Trypanosoma cruzi (18.2%) was found mainly in vespertilionid and phyllostomid bats from the Pantanal/Cerrado and the Atlantic Forest (Central to Southeast), with a few isolates from Amazonia.


Asunto(s)
Quirópteros/parasitología , Variación Genética , Trypanosoma/clasificación , Trypanosoma/aislamiento & purificación , Tripanosomiasis/veterinaria , Animales , Brasil , Análisis por Conglomerados , Citocromos b/genética , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , Geografía , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Datos de Secuencia Molecular , Filogenia , Proteínas Protozoarias/genética , ARN Protozoario/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN , Trypanosoma/genética , Tripanosomiasis/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...